
Kuncheng Feng

CSC 466 Presentation

Tier List Player Plus Plus

Abstract:

This player is built upon the “TierListPlayerPlus.l”, with the only difference

being that when placing ships, it will try to avoid placing them next to each other, as I

personally think that it will improve the chances of success.

Code:

The only difference in code:

(defmethod playerPlaceShips((player tierListPlayerPlusPlus) &aux board

ships)

(setf ships (player-ships player))

(setf board (player-board player))

; Loop through the ships that have to be placed

(loop for ship in ships do

(noneAdjacentPlaceShip ship board)

)

)

; noneAdjacentPlaceShip method can be found in "Ship.l"

The new method:

(defmethod noneAdjacentPlaceShip((s ship) (b board) &aux pos)

(setf pos (getNoneAdjacentPosition s b))

(placeShip (first pos) (second pos) (third pos) (fourth pos) s b)

)

The “getNoneAdjacentPosition” will get the ship size and guess 2 locations, it will

keep guessing until the locations are valid

(defmethod getNoneAdjacentPosition((s ship) (b board) &aux x1 y1 x2 y2)

(setf size (- (get '*shipSize* (ship-type s)) 1))

(setf maxX (- (board-width b) size))

(setf maxY (- (length (board-rows b)) size))

(loop

(setf x1 (random maxX))

(setf y1 (random maxY))

(if (= (random 2) 0)

(progn

(setf x2 (+ x1 size))

(setf y2 y1)

)

(progn

(setf x2 x1)

(setf y2 (+ y1 size))

)

)

(when (and (checkValidNoText x1 y1 x2 y2 s b) (checkNoneAdjacents x1 y1 x2 y2 b))

(return (list x1 y1 x2 y2))

)

)

)

The locations are considered valued if it passes the previous checks, (correct size, not

diagonal, not out of bound, not occupied), and if none of the locations in between has

a ship that is placed adjacent to it.

(defmethod checkNoneAdjacents(x1 y1 x2 y2 b &aux result)

(setf result t)

(if (= x1 x2)

; Ship is placed vertically

(loop for y from y1 to y2 do

(setf result (and result (checkCellAdjacent x1 y b)))

)

; Ship is placed horizontally

(loop for x from x1 to x2 do

(setf result (and result (checkCellAdjacent x y1 b)))

)

)

result

)

“checkCellAdjacent” method simply check if all neighbors of this cell are either nil or

empty, if it’s not empty it fail to pass the check.

(defmethod checkCellAdjacent(x y b &aux leftCell rightCell aboveCell

belowCell result)

(setf leftCell (getCell (- x 1) y b))

(setf rightCell (getCell (+ x 1) y b))

(setf aboveCell (getCell x (- y 1) b))

(setf belowCell (getCell x (+ y 1) b))

(setf result t)

; Each adjacent cell should not be occupied by anything.

(loop for cell in (list leftCell rightCell aboveCell belowCell) do

(if (notNilAndNotEmpty cell)

(setf result nil)

)

)

result

)

“notNilAndNotEmpty” method checks what its title suggests.

(defmethod isCellEmpty((c cell))

(equal (cell-resident c) nil)

)

(defmethod notNilAndNotEmpty((c cell))

(not (isCellEmpty c))

)

(defmethod notNilAndNotEmpty(NotCell)

nil

)

Demo:

I feel the best way to demo is to compare it with randomly placed ships.

A board with randomly placed ships:

[6]> (setf ships (generateShips))

(#<SHIP #x1A510F75> #<SHIP #x1A510BA1> #<SHIP #x1A5107CD> #<SHIP

#x1A5103F9> #<SHIP #x1A510025>)

[7]> (setf board (newBoard 10 10))

#<BOARD #x1A52D925>

[8]> (loop for ship in ships do (randomlyPlaceShip ship board))

NIL

[9]> (display board)

A B C D E F G H I J

+---+---+---+---+---+---+---+---+---+---+

0 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

1 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

2 | | | | | | 5 | 5 | 5 | 5 | 5 |

+---+---+---+---+---+---+---+---+---+---+

3 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

4 | | 4 | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

5 | | 4 | 2 | 2 | 2 | | | | | |

+---+---+---+---+---+---+---+---+---+---+

6 | | 4 | | 3 | 3 | 3 | | | | |

+---+---+---+---+---+---+---+---+---+---+

7 | | 4 | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

8 | | | 1 | 1 | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

9 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

NIL

A board with none of the ships adjacently placed:

[10]> (setf ships (generateShips))

(#<SHIP #x1A54C1A9> #<SHIP #x1A54BDD5> #<SHIP #x1A54BA01> #<SHIP

#x1A54B62D> #<SHIP #x1A54B259>)

[11]> (setf board (newBoard 10 10))

#<BOARD #x1A568B5D>

[12]> (loop for ship in ships do (noneAdjacentPlaceShip ship board))

NIL

[13]> (display board)

A B C D E F G H I J

+---+---+---+---+---+---+---+---+---+---+

0 | | 1 | 1 | | | 5 | 5 | 5 | 5 | 5 |

+---+---+---+---+---+---+---+---+---+---+

1 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

2 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

3 | | | | | | | 3 | 3 | 3 | |

+---+---+---+---+---+---+---+---+---+---+

4 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

5 | | | | | | | | | | |

+---+---+---+---+---+---+---+---+---+---+

6 | | | | | | 4 | | 2 | | |

+---+---+---+---+---+---+---+---+---+---+

7 | | | | | | 4 | | 2 | | |

+---+---+---+---+---+---+---+---+---+---+

8 | | | | | | 4 | | 2 | | |

+---+---+---+---+---+---+---+---+---+---+

9 | | | | | | 4 | | | | |

+---+---+---+---+---+---+---+---+---+---+

NIL

Let’s see how well it play against other AIs:

Against Random Player:

[14]> (getStatistics)

Available AIs:

1 - RANDOMPLAYER

2 - RANDOMPLAYERPLUS

3 - RANDOMPLAYERPLUSPLUS

4 - TIERLISTPLAYER

5 - TIERLISTPLAYERPLUS

6 - TIERLISTPLAYERPLUSPLUS

Enter a corresponding number to choose AI 1: 1

Enter a corresponding number to choose AI 2: 6

Enter the number of iterations: 100

100 games played:

Player 1 (RANDOMPLAYER) victories: 0

Player 2 (TIERLISTPLAYERPLUSPLUS) victories: 100

Draws: 0

NIL

Against Random Player Plus:

[15]> (getStatistics)

Available AIs:

1 - RANDOMPLAYER

2 - RANDOMPLAYERPLUS

3 - RANDOMPLAYERPLUSPLUS

4 - TIERLISTPLAYER

5 - TIERLISTPLAYERPLUS

6 - TIERLISTPLAYERPLUSPLUS

Enter a corresponding number to choose AI 1: 2

Enter a corresponding number to choose AI 2: 6

Enter the number of iterations: 100

100 games played:

Player 1 (RANDOMPLAYERPLUS) victories: 16

Player 2 (TIERLISTPLAYERPLUSPLUS) victories: 83

Draws: 1

NIL

Against Random Player Plus Plus

Note that even though the RandomPlayer++ can’t beat the + version, it fairs better

against this one.

[16]> (getStatistics)

Available AIs:

1 - RANDOMPLAYER

2 - RANDOMPLAYERPLUS

3 - RANDOMPLAYERPLUSPLUS

4 - TIERLISTPLAYER

5 - TIERLISTPLAYERPLUS

6 - TIERLISTPLAYERPLUSPLUS

Enter a corresponding number to choose AI 1: 3

Enter a corresponding number to choose AI 2: 6

Enter the number of iterations: 100

100 games played:

Player 1 (RANDOMPLAYERPLUSPLUS) victories: 28

Player 2 (TIERLISTPLAYERPLUSPLUS) victories: 70

Draws: 2

NIL

Against Tier List Player

[17]> (getStatistics)

Available AIs:

1 - RANDOMPLAYER

2 - RANDOMPLAYERPLUS

3 - RANDOMPLAYERPLUSPLUS

4 - TIERLISTPLAYER

5 - TIERLISTPLAYERPLUS

6 - TIERLISTPLAYERPLUSPLUS

Enter a corresponding number to choose AI 1: 4

Enter a corresponding number to choose AI 2: 6

Enter the number of iterations: 100

100 games played:

Player 1 (TIERLISTPLAYER) victories: 31

Player 2 (TIERLISTPLAYERPLUSPLUS) victories: 69

Draws: 0

NIL

Against Tier List Player Plus

[18]> (getStatistics)

Available AIs:

1 - RANDOMPLAYER

2 - RANDOMPLAYERPLUS

3 - RANDOMPLAYERPLUSPLUS

4 - TIERLISTPLAYER

5 - TIERLISTPLAYERPLUS

6 - TIERLISTPLAYERPLUSPLUS

Enter a corresponding number to choose AI 1: 5

Enter a corresponding number to choose AI 2: 6

Enter the number of iterations: 100

100 games played:

Player 1 (TIERLISTPLAYERPLUS) victories: 53

Player 2 (TIERLISTPLAYERPLUSPLUS) victories: 44

Draws: 3

NIL

Against itself

[19]> (getStatistics)

Available AIs:

1 - RANDOMPLAYER

2 - RANDOMPLAYERPLUS

3 - RANDOMPLAYERPLUSPLUS

4 - TIERLISTPLAYER

5 - TIERLISTPLAYERPLUS

6 - TIERLISTPLAYERPLUSPLUS

Enter a corresponding number to choose AI 1: 6

Enter a corresponding number to choose AI 2: 6

Enter the number of iterations: 100

100 games played:

Player 1 (TIERLISTPLAYERPLUSPLUS) victories: 50

Player 2 (TIERLISTPLAYERPLUSPLUS) victories: 46

Draws: 4

NIL

Just a side note:

While trying to get the Tier List Plus Plus player to play against itself,

sometimes it will get stuck in infinite loops.

Upon hours of debugging, I found out that it simply was taking way too long to

place ships on the board, as sometimes it is hard to get consecutive random locations

that have no adjacent ships.

However I found a simple fix, under the “getStatistics” function under the

“Main.l” file, where I generate the ships, I simply reverse the list of ships generated:

(dotimes (n iterations)

; Set up necessary instances

(setf b1 (newBoard 10 10))

(setf b2 (newBoard 10 10))

(setf s1 (reverse (generateShips)))

(setf s2 (reverse (generateShips)))

…

Due to that “generateShips” method returns a list of ship instances, with

smaller ship instances at the beginning, it imposes a big challenge for AI as it now

needs to place bigger and bigger ships on a board with less and less available spaces.

WIth the “reverse” the bigger ships instances will be put in front, it will end up

being doable to find smaller consecutive spaces on an increasingly smaller board

